

Homeostatic Regulation of the Immune System by Receptor Tyrosine Kinases of the Tyro 3 Family

Qingxian Lu, et al. Science **293**, 306 (2001);

DOI: 10.1126/science.1061663

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 25, 2008):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:

http://www.sciencemag.org/cgi/content/full/293/5528/306

Supporting Online Material can be found at:

http://www.sciencemag.org/cgi/content/full/293/5528/306/DC1

A list of selected additional articles on the Science Web sites **related to this article** can be found at:

http://www.sciencemag.org/cgi/content/full/293/5528/306#related-content

This article cites 19 articles, 3 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/293/5528/306#otherarticles

This article has been **cited by** 87 article(s) on the ISI Web of Science.

This article has been **cited by** 39 articles hosted by HighWire Press; see: http://www.sciencemag.org/cgi/content/full/293/5528/306#otherarticles

This article appears in the following **subject collections**: Immunology

http://www.sciencemag.org/cgi/collection/immunology

Information about obtaining **reprints** of this article or about obtaining **permission to reproduce this article** in whole or in part can be found at: http://www.sciencemag.org/about/permissions.dtl

analyzed by RNase protection assay, was present in all brain compartments examined (22). Approximate extracellular IFN-γ production by recombinant virus is 1.5×10^6 plaque-forming units (pfu) per unit of IFN-γ, as determined by L-929 bioactivity assay. The relative roles of secreted and intracellular IFN- γ in SV clearance are unclear, but previous studies have shown that intracellular IFN-γ can mediate virus protection in an IFN- γ receptor-dependent fashion similar to that of exogenous IFN- γ (23). Therefore, local production of IFN-γ alone is sufficient to effect T cell-mediated clearance of virus from some, but not all regions of the CNS. IFN-γ has direct antiviral activity in peripheral tissues and is important for clearance of mouse hepatitis virus from neurons and of VV from choriodal and meningeal cells in vivo (21, 24, 25). Our data provide further evidence for the specific role of IFN-y in noncytolytic clearance of virus from some, but not all, types of neurons.

CD8 T cells function through cytokine production and/or the cytotoxic response. It is widely accepted that cytotoxic T lymphocytes (CTL) provide antiviral protection through lysis of infected cells (26). However, in situations where the cells are nonrenewable or where large numbers of cells are infected, lysis is counterproductive or not effective. Early studies of persistent lymphocytic choriomeningitis virus infection of the CNS suggested that CD8 T cells could resolve infection without necrosis (27), and evidence has accumulated for alternate noncytolytic, cytokine-mediated T cell mechanisms of virus clearance (6, 28, 29). Our study demonstrates IFN-y-mediated noncytolytic clearance of virus from neurons in vivo, providing evidence for the role of T cell cytokine production in the resolution of virus infection as an alternative to CTL-mediated killing of virus-infected cells. However, neurons are heterogeneous in their responses to IFN-γ, resulting in a failure to contain virus replication in localized regions of the CNS. These results define some of the important immune components for recovery from viral encephalomyelitis, which could be useful in developing therapies targeted for specific regions of the CNS.

References and Notes

- A. C. Jackson, T. R. Moench, B. D. Trapp, D. E. Griffin, Lab. Invest. 58, 503 (1988).
- D. E. Griffin, R. T. Johnson, J. Immunol. 118, 1070 (1977).
- 3. B. Levine et al., Science 254, 856 (1991).
- S. L. Wesselingh, D. E. Griffin, J. Immunol. 152, 1289 (1994).
- 5. L. G. Guidotti, F. V. Chisari, Virology 273, 221 (2000).
- 6. L. G. Guidotti et al., Science 284, 825 (1999).
- A. J. Ramsay, J. Ruby, I. A. Ramshaw, *Immunol. Today* 14, 155 (1993).
 E. Joly, L. Mucke, M. B. A. Oldstone, *Science* 253, 1283
- (1991). 9. T. Kimura, D. E. Griffin, J. Virol. **13**, 6117 (2000).

- D. Kitamura, J. Roes, R. Kuhn, K. Rajewsky, *Nature* 350, 423 (1991).
- 11. P. C. Tucker, D. E. Griffin, J. Virol. 65, 1551 (1991).
- 12. Wild-type C57BL/6J, antibody knockout C57BL/6
 Igh-6^{tm1Cgn}, SCID C57BL/6J-Prkdc^{scid}/SzJ, and recombination activating gene-1 knockout C57BL/6J
 Rag1^{tm1Mom} were purchased from the Jackson Laboratory at 4 to 6 weeks of age. For infection, 1000 pfu

 of SV in 30 µL of Hanks' balanced salt solution was
 injected intracerebrally with a tuberculin syringe.
- The Web figures are available on Science Online at www.sciencemag.org/cgi/content/full/293/5528/ 303/DC1.
- 14. The GK1.5 (α-CD4)- and 2.43 (α-CD8)-producing hybridomas (American Type Culture Collection, Manassas, VA) were injected into SCID mice for ascites production, and antibody was quantitated by enzyme-linked immunosorbent assay (Bethyl Laboratories). Mice were given 0.25 mg of antibody in a total of 0.5 ml of phosphate-buffered saline intraperitoneally every day for 3 days. Three days later, depletion was complete (>98%) and mice were infected with SV. Depletion was confirmed for each mouse by flow cytometric analysis of spleen cells.
- 15. μ MT mice were vaccinated in each footpad with either 330 pfu of SV or 2.5 \times 10⁴ pfu of VV. Six days later, lymphocytes from draining lymph nodes were removed and suspended in Dulbecco's modified essential medium containing 10% fetal bovine serum and penicillin or streptomycin. SCID mice were infected with SV 3 days before intraperitoneal transfer of 6 \times 10⁶ cells.

- J. P. Kelly, in *Principles of Neural Science*, E. R. Kandel, J. H. Schwartz, T. M. Jessell, Eds. (Elsevier Science, New York, 1991), pp. 283–295.
- J. Dodd, in *Principles in Neural Science*, E. R. Kandel, J. H. Schwartz, T. M. Jessell, Eds. (Elsevier Science, New York, 1991), pp. 273–282.
- L. Schnell, S. Fearn, H. Klassen, M. E. Schwab, V. H. Perry, Eur. J. Neurosci. 11, 3648 (1999).
- L. P. McCluskey, L. Lampson, J. Neuropathol. Exp. Neurol. 59, 177 (2000).
- E. H. Cheng, B. Levine, L. H. Boise, C. B. Thompson, J. M. Hardwick, *Nature* **379**, 554 (1996).
- B. D. Pearce, M. V. Hobbs, T. S. McGraw, M. J. Buchmeier, J. Virol. 68, 5483 (1994).
- 22. G. K. Binder, D. E. Griffin, unpublished data.
- A. Will, U. Hemmann, F. Horn, M. Rollinghoff, A. Gessner, J. Immunol. 157, 4576 (1996).
- M. Lin, D. Hinton, S. Stohlman, Adv. Exp. Med. Biol. 440, 431 (1998).
- T. M. Kundig, H. Hengartner, R. M. Zinkernagel, J. Immunol. 150, 2316 (1993).
- R. M. Zinkernagel, P. C. Doherty, *Nature* **248**, 701 (1974).
- 27. M. B. A. Oldstone, P. Blount, P. J. Southern, *Nature* **321**, 239 (1986).
- 28. I. A. Ramshaw *et al.*, *Immunol. Rev.* **159**, 119 (1997).
- 29. L. G. Guidotti et al., Immunity 4, 25 (1996).
- We thank B. Schofield for assistance in imaging and photography. Supported by grants from the Markey Foundation (G.K.B.) and from the National Institute of Neurological Diseases and Stroke (D.E.G.).
 - 9 February 2001; accepted 30 May 2001

Homeostatic Regulation of the Immune System by Receptor Tyrosine Kinases of the Tyro 3 Family

Qingxian Lu and Greg Lemke*

Receptor tyrosine kinases and their ligands mediate cell-cell communication and interaction in many organ systems, but have not been known to act in this capacity in the mature immune system. We now provide genetic evidence that three closely related receptor tyrosine kinases, Tyro 3, Axl, and Mer, play an essential immunoregulatory role. Mutant mice that lack these receptors develop a severe lymphoproliferative disorder accompanied by broad-spectrum autoimmunity. These phenotypes are cell nonautonomous with respect to lymphocytes and result from the hyperactivation of antigen-presenting cells in which the three receptors are normally expressed.

The elimination of reactive lymphocytes is a central feature of homeostatic regulation in the immune system. Although clonal expansion of lymphocytes is essential for immune responses, activated T and B cells must be deleted once the antigens that triggered their expansion have been eradicated. Similarly, autoreactive T cell clonotypes pose a severe threat to tissue and organ integrity, and must also be deleted. Deficiencies in the homeostatic regulation of expanded or autoreactive lymphocytes lead to lymphoproliferative dis-

Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.

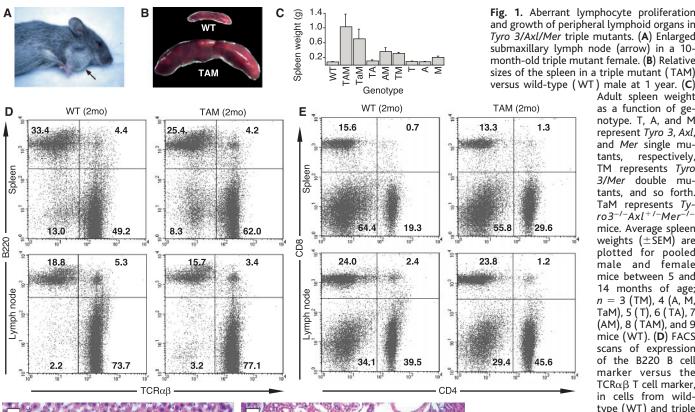
*To whom correspondence should be addressed. E-mail: lemke@salk.edu

orders, impaired immune function, autoimmunity, and death (1).

In the mature immune system, lymphocyte numbers are under the control of a wide variety of soluble cytokines, as well as cell surface inhibitory and costimulatory molecules. Although many of these regulators bind to receptors that are coupled to cytoplasmic protein-tyrosine kinases (PTKs), none of them is known to signal through the more direct mechanism of binding and activating a receptor with intrinsic PTK activity (2). This notwithstanding, we have found that three structurally related receptor PTKs—Tyro 3 (3, 4), Axl (3, 5), and Mer (3, 6)—play an essential immunoregulatory role. These receptors are, together with their ligands Gas6

and Protein S (7, 8), widely coexpressed in cells of the immune, nervous, vascular, and reproductive systems, but their biological roles in these tissues have only recently begun to be addressed directly (9).

We have analyzed the immune system phenotypes of an allelic series of mice that are singly, doubly, and triply mutant in the Tyro 3, Axl, and Mer genes (9). At birth, even triple mutants of this series displayed peripheral lymphoid organs of normal size and weight, and the initial postnatal development of both their lymphoid and myeloid cell lineages was not obviously different from wild type. Beginning at ~4 weeks, however, the spleens and lymph nodes of these triple mutants grew at elevated rates relative to wild type (Fig. 1, A through C), such that by 1 year of age, their spleen weights were on average 10 times that of wild type (C57Bl/6 \times 129sv) (Fig. 1C). Dramatic enlargements of lymph nodes were also evident in all triple mutants, notably in the submaxillary, popliteal, and mesenteric nodal stations (Fig. 1A). These


changes were progressively dependent on the inactivation of all three genes in the Tyro 3 family (Fig. 1C), a genetic interaction through the allelic series that is consistent with the extensive coexpression of Tyro 3, Axl, and Mer in cells of the immune system and elsewhere (9).

The aberrant growth of peripheral lymphoid organs was primarily due to the hyperproliferation of B and T cells. Although both classes of lymphocyte were greatly increased in the triple mutants, flow cytometric analyses (10) revealed a modest but selective enrichment of T cells over B cells (Fig. 1, D and E). Within T cell populations, we detected a further enrichment for CD4+ over CD8+ cells (Fig. 1E). The continued proliferation of B and T cells in the triple mutants eventually filled their lymphoid compartments beyond capacity. Remarkably, we detected ectopic colonies of lymphocytes in every adult organ that we examined, including lung, liver, kidney, heart, pancreas, intestine, skeletal muscle, eye, brain, and spinal cord (Fig. 1, F and G).

The B and T cell populations of the triple

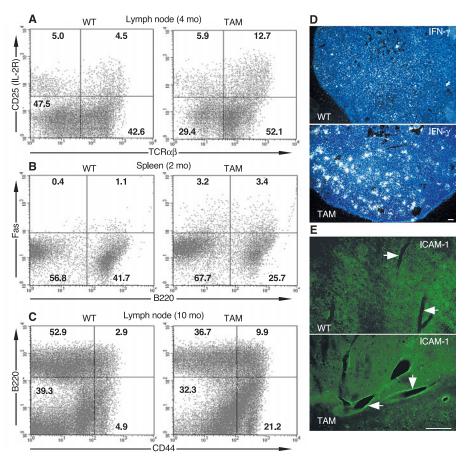
mutants were also constituitively activated. Elevated numbers of triple mutant T cells, for example, expressed the interleukin-2 (IL-2) receptor (Fig. 2A) and the lectin CD69 (11), both markers of T cell activation. Similarly, triple mutant B cells displayed elevated surface expression of the acute activation marker Fas (Fig. 2B) and the chronic activation marker CD44 (Fig. 2C), and a pronounced increase in the expression of interferon-gamma (IFN-γ) was observed in the spleen and lymph nodes (Fig. 2D). The broad activation of B and T cells was, in turn, reflected in the activation of nonimmune tissues with which these cells interact. For example, intercellular adhesion molecule-1 (ICAM-1), which is required for lymphocyte adhesion to blood vessels and subsequent invasion of tissue parenchyma, was strongly upregulated in the vascular endothelia of the triple mutants (Fig. 2E).

All triple mutants eventually developed autoimmunity. Disease symptoms, which were first detectable in a subset of individuals at ~4 weeks after birth, were histologically similar to those seen in a broad spectrum of

mutant (TAM) spleen and lymph node at 2 months of age. In these and all subsequent FACS scan panels, numbers in each quadrant are the percentage of cells in the sort that occupy that quadrant. (E) Expression of the T cell markers CD8 versus CD4 in WT and TAM spleen and lymph node at 2 months of age. (F) Colonies of small, darkly staining lymphocytes (arrows) in the liver, and in (G), the kidney, of a triple mutant. Bar, 0.1 mm.

Fig. 1. Aberrant lymphocyte proliferation and growth of peripheral lymphoid organs in Tyro 3/Axl/Mer triple mutants. (A) Enlarged submaxillary lymph node (arrow) in a 10month-old triple mutant female. (B) Relative sizes of the spleen in a triple mutant (TAM)

> as a function of genotype. T, A, and M represent Tyro 3, Axl, and Mer single mutants, respectively, TM represents Tyro 3/Mer double mutants, and so forth. TaM represents Tyro3^{-/-}Axl^{+/-}Mer^{-/-} mice. Average spleen weights (±SEM) are plotted for pooled male and female mice between 5 and 14 months of age; n = 3 (TM), 4 (A, M, TaM), 5 (T), 6 (TA), 7 (AM), 8 (TAM), and 9 mice (WT). (D) FACS scans of expression of the B220 B cell marker versus the TCRαβ T cell marker, in cells from wildtype (WT) and triple


> Adult spleen weight

human autoimmune disorders, including rheumatoid arthritis (12) (Fig. 3A), pemphigus vulgaris (13) (Fig. 3B), and systemic lupus erythematosus (SLE) (14) (Fig. 3C). We detected recurrent thromboses and hemorrhage in several tissues, including the brain (Fig. 3D). These thromboses, which are associated with the presence of antibodies to phospholipids in human autoimmune syndromes (15), were especially prevalent in triple mutant females. Systemic autoimmune diseases result in elevated blood titers of antibodies directed against normal cellular antigens, including nucleoproteins and double-stranded (ds) DNA (16). Consistent with their autoimmune manifestations, we measured abnormally high levels of circulating antibodies to dsDNA throughout the allelic series of Tyro 3 family mutants (17, 18) (Fig. 3E). In general, individuals carrying mutations in any two of the three genes exhibited higher α-dsDNA titers than did single mutants; on average, triple mutant titers were the highest (Fig. 3E). Also prevalent were autoantibodies to various collagens (Fig. 3F), which are frequently detected in the sera of patients with rheumatoid arthritis (12). Circulating antibodies to phospholipids, which are among the most reliable indicators of human autoimmune syndromes characterized by recurrent thromboses, hemolytic anemia, and, in women, chronic infertility due to recurrent fetal loss (19), appeared throughout the allelic series. We detected markedly elevated antibody titers to cardiolipin (Fig. 3G), phosphatidylserine (11), phosphatidylethanolamine (11), and phosphatidylinositol (Fig. 3H). Elevated α -cardiolipin titers were observed in several Tyro 3 and Axl single mutants, and individual triple mutants frequently displayed titers that were 20- to 40-fold higher than wild type (Fig. 3G). Most triple mutant females never carried pregnancies to term.

B and T cells do not express the three receptor genes that we inactivated. Previous work has established that Mer is expressed by peripheral blood and bone marrow mononuclear cells, monocytes, and macrophages, but not by granulocytes or peripheral blood B or T lymphocytes (6, 20). Similarly, Axl is expressed by CD34⁺ progenitor and bone marrow stromal cells and by peripheral monocytes and macrophages, but not by granulocytes or lymphocytes (21, 22). We used similar flow cytometric analyses with cell-specific markers to demonstrate that the Tyro 3 gene is also the product of monocytes and macrophages but not of B or T cells (11). In addition, we used in situ hybridization to examine the sites of expression of the Tyro 3, Axl, and Mer mRNAs, and of the Gas6 and Protein S mRNAs, in lymphoid tissues (Fig. 4, A through J). In the spleen, the mRNAs for all three receptors and both ligands were localized to the red pulp and to the marginal zones, and were largely excluded from the periarteriolar lymphoid sheath, the B cell corona, and the germinal centers of the white pulp, which contain the bulk of both B and T cells (circled signal-free areas in Fig. 4, A, C, E, G, and I). The Tyro 3 and Axl mRNAs were similarly absent from the primary lymphoid follicles and germinal centers of the lymph nodes (Fig. 4, B and D), which are predominantly composed of B cells, and the same was true for Gas6 and Protein S (Fig. 4, H and J). Each of these mRNAs were instead localized to paracortical and medullary cord regions of the lymph node, which contain macrophages and T cells. A similar pattern was observed for Mer mRNA, although a small number of discrete Mer+ cells were also detected within lymphoid follicles (Fig. 4F). The Tyro 3, Axl, and Mer mRNAs were each also confined to the central medulla of the

thymus (23), a localization that excludes expression by immature T cells but is consistent with expression by dendritic cells and macrophages.

In addition to these expression analyses, we performed a series of in vivo transfer experiments in both wild-type and triple mutant mice. We labeled wild-type spleen cells with the fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) (24-26), which allowed us to measure the proliferation of the donor cells after injection. As measured by flow cytometry, successive rounds of cell division result in successive twofold diminutions in the fluorescence intensity of CFSE-labeled daughter cells. Three to 4 days after injection of CFSE-labeled cells, we analyzed spleens and lymph nodes of the injected mice for the number and fluorescence intensity of CFSE-labeled B220+ B cells and of labeled CD4+ and CD8+ T cells (Fig. 4, K through N). As expected, injection of wildtype cells into wild-type recipients (WT →

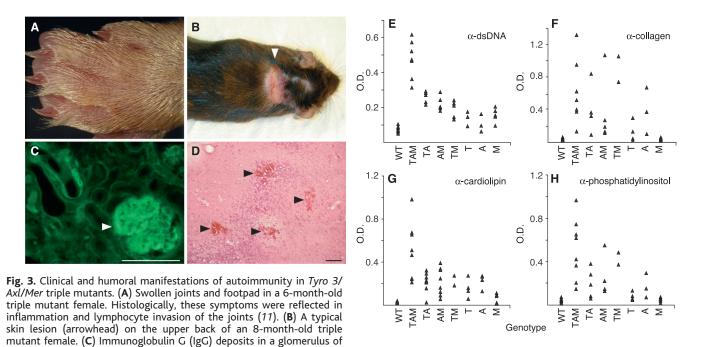


Fig. 2. Activation of the immune system in the triple mutants. (**A**) Expression of the IL-2 receptor (CD25) on TCRαβ⁺ nodal T cells from wild-type and triple mutant individuals at 4 months of age. (**B**) Expression of Fas on B220⁺ splenic B cells from wild-type and triple mutant individuals at 2 months of age. (**C**) Expression of the chronic activation marker CD44 on B220⁺ lymph node B cells from wild-type and triple mutant individuals at 10 months of age. (**D**) In situ hybridization to sections of lymph nodes from 6-month-old micedemonstrating strong up-regulation of IFNγ mRNA in triple mutant (TAM) relative to wild type (WT). IFN-γ mRNA is abundantly expressed in T cell–rich regions of the triple mutant spleen (*11*). (**E**) Immunohistochemical staining of ICAM-1 on endothelial cells lining blood vessels in the brain (arrows) in triple mutants (TAM) relative to wild type (WT). Bars, 0.1 mm.

WT) resulted in the recovery of nondividing B and T cell populations from the spleens and lymph nodes of the recipients (Fig. 4, L and N). In contrast, injection of the same cells

Protein S

into triple mutants (WT \rightarrow TAM) resulted in the recovery of wild-type donor B and T cells that had undergone multiple rounds of cell division. The wild-type B cells that failed to proliferate in wild-type recipients were observed to undergo up to four rounds of cell division after 4.5 days in triple mutant spleens (Fig. 4K), and the wild-type T cells

the kidney (arrowhead) in a 12-month-old triple mutant female. (D) Blood vessel hemorrhages (arrowheads) in the brain of a 12-month-old triple mutant female. Bars, 0.1 mm. Circulating autoantibodies were measured in a 1:200 dilution of serum collected from single, double, and triple mutants of the Tyro 3 allelic series, against dsDNA (E), collagen (F), cardiolipin (G), and phosphatidylinositol (H). Points represent the average of triplicate determinations by solid-phase ELISA (17, 18) in individual mice of the indicated genotypes. Genotype designations are as for Fig. 1C.

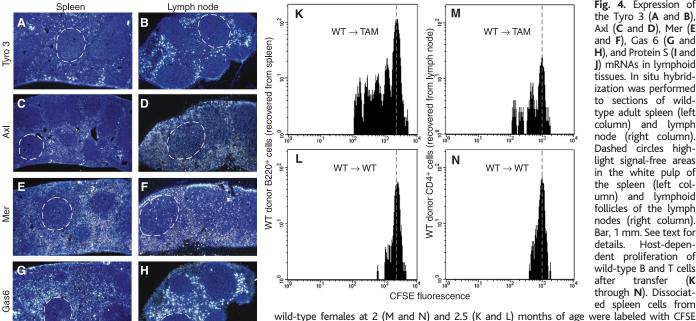


Fig. 4. Expression of the Tyro 3 (A and B), Axl (C and D), Mer (E and F), Gas 6 (G and H), and Protein S (I and J) mRNAs in lymphoid tissues. In situ hybridization was performed to sections of wildtype adult spleen (left column) and lymph node (right column). Dashed circles highlight signal-free areas in the white pulp of the spleen (left column) and lymphoid follicles of the lymph nodes (right column). Bar, 1 mm. See text for details. Host-dependent proliferation of wild-type B and T cells after transfer through N). Dissociated spleen cells from

(24–26), and injected into the tail veins of wild-type (L and N) and triple mutant (K and M) females at 8 to 10 months of age. Cells were recovered from either the spleens (K and L) or lymph nodes (M and N) of the recipients at 4.5 (K and L) and 4 (M and N) days after injection; dissociated cells were then analyzed by flow cytometry for expression of the B cell marker B220 (K and L) or the T cell marker CD4 (M and N) and were simultaneously measured for CFSE fluorescence intensity (x axis, all panels). Dotted lines mark mean CFSE fluorescence peaks that correspond to absence of proliferation of the injected cells.

that failed to proliferate by 4 days after injection in wild-type recipients were observed to undergo up to three rounds of cell division by the same time in the triple mutant lymph nodes (Fig. 4M).

The above results suggest that rather than B and T lymphocytes, the cells that initiate the lymphoproliferation and autoimmunity of the Tyro 3 family mutants are the macrophages and dendritic cells that normally express the three inactivated receptor genes. It has previously been noted that peritoneal macrophages cultured from Mer single mutants and challenged with bacterial lipopolysaccharide (LPS) express excessive levels of both activated nuclear factor kappa B (NFκB) and the inflammatory cytokine tumor necrosis factor α (TNF α) (27, 28). Therefore, we examined the activation status of antigenpresenting cells (APCs) identified with the macrophage and dendritic cell markers CD11b and CD11c, at steady-state and in response to LPS stimulation, in triple mutants versus wild type (Fig. 5). Activated APCs

express elevated levels of major histocompatibility complex (MHC) antigens on their surface, and this was the case for APCs in the triple mutants. Although MHC class II (I-A^b) levels were only modestly elevated in CD11c⁺ cells freshly dissociated from triple mutant spleen or lymph node (Fig. 5A, upper panels), these levels were superelevated in the same cells as an acute (1 hour) response to a 100 mg/kg intraperitoneal (IP) injection of LPS (Fig. 5A, lower panels). A similar LPS-induced superelevation of the B7.2 (CD86) co-receptor, also a marker of APC activation, was observed (Fig. 5B). Triple mutant peritoneal macrophages expressed aberrantly high MHC class II levels in cell culture, even in the absence of LPS stimulation (Fig. 5C, upper panels), and these levels were even further elevated 5 hours after exposure to LPS (Fig. 5C, lower panels). We also observed that cultured triple mutant macrophages produced excessive amounts of the proinflammatory cytokine IL-12 (Fig. 5D), and exhibited a 3.5 \pm 0.9-fold increase (rel-

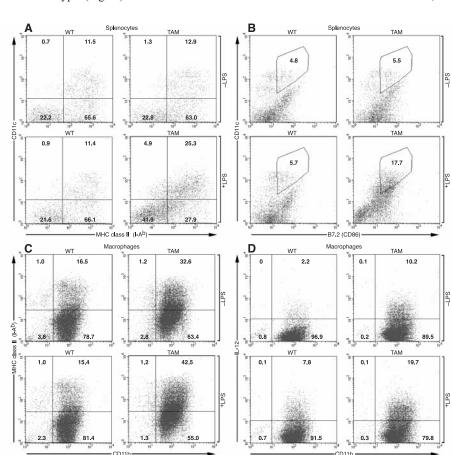


Fig. 5. Hyperactivation of APCs in the triple mutants. (A) Expression of MHC class II protein on the surface of CD11c⁺ splenocytes isolated from wild-type (WT) and triple mutant (TAM) mice, before (–LPS) and 1 hour after (+LPS) an IP injection of LPS (100 mg/kg). (B) Expression of B7.2 on the surface of CD11c⁺ splenocytes isolated from wild-type (WT) and triple mutant (TAM) mice, before (–LPS) and 1 hour after (+LPS) an IP injection of LPS. (C) Expression of MHC class II protein on the surface of wild-type (WT) and triple mutant (TAM) CD11b⁺ peritoneal macrophages in culture, before (–LPS) and 5 hours after (+LPS) exposure to LPS (1 μ g/ml). (D) Expression of IL-12 in fixed and permeabilized wild-type (WT) and triple mutant (TAM) CD11b⁺ peritoneal macrophages in culture, before (–LPS) and 5 hours after (+LPS) exposure to LPS.

ative to wild type) in generalized phagocytosis in vitro, as assayed by the uptake of fluorescently labeled *Escherichia coli* after 1 hour of co-culture (28, 29). Finally, serum levels of TNF α were 11.3 \pm 2.5 ng/ml 1 hour after injection of LPS into the triple mutants (n=3 mice), as compared to 5.2 \pm 1.1 ng/ml (n=3) for wild type.

The salient features of the autoimmune phenotypes described above have important implications for the development of autoimmunity in humans (23). The chronic hyperactivation of APCs in the triple mutants indicates that signaling through the Tyro 3 family receptors normally serves as a selfextinguishing regulatory mechanism that limits the severity and time course of inflammatory immune responses. The frequently observed coexpression of the receptors and their ligands (9), together with the presence of conserved immunoreceptor tyrosine-based inhibition motifs (ITIM-like elements) (30) in the cytoplasmic domains of all three receptors, immediately suggest a molecular basis for this self-regulation (23), a model that we are currently testing.

References and Notes

- M. Lenardo et al., Annu. Rev. Immunol. 17, 221 (1999).
- A. Miyajima et al., Annu. Rev. Immunol. 10, 295 (1992).
- 3. C. Lai, G. Lemke, *Neuron* **6**, 691 (1991).
- 4. C. Lai, M. Gore, G. Lemke, Oncogene 9, 2567 (1994).
- 5. J. P. O'Bryan et al., Mol. Cell. Biol. 11, 5016 (1991).
- 6. D. K. Graham et al., Cell Growth Differ. **5**, 647 (1994).
- 7. T. N. Stitt et al., Cell **80**, 661(1995).
- 8. P. J. Godowski et al., Cell 82, 355 (1995)
- 9. Q. Lu et al., Nature 398, 723 (1999).
- 10. Single-cell suspensions were prepared from lymphoid organs and depleted of red blood cells. Under conditions recommended by the antibody supplier, 10⁶ cells were incubated with fluorescently labeled antibodies, and then washed three times with phosphate-buffered saline (PBS). Labeled cells were sorted on a Becton-Dickinson FACScan (fluorescence-activated) cell sorter. R-Phycoerythrin-, fluoresceni isothiocyante-, and cychrome-conjugated antibodies to CD45R/B220, CD4, CD8a, CD11b, CD69, CD44H, FAS, CD11c, TCRβ chain, I-A^b, CD86, and IL-12 were purchased from BD Pharmingen. Conjugated antibodies to CD25 and ICAM-1 were purchased from Sigma and Chemicon, respectively.
- 11. Q. Lu and G. Lemke, unpublished data.
- J. M. Stuart, A. S. Townes, A. H. Kang, Annu. Rev. Immunol. 2, 199 (1984).
- 13. H. C. Nousari, G. J. Anhalt, Lancet 354, 667 (1999).
- B. H. Hahn, in *Dubois' Lupus Erythematosus*, D. J. Wallace, B. H. Hahn, Eds. (Williams & Wilkins, Baltimore, MD, 1997), pp. 69–75.
- 15. M. Greaves, Haematologica 84, 32 (1999).
- M. Z. Radic, M. Weigert, Annu. Rev. Immunol. 12, 487 (1994).
- 17. D. C. Hess et al., J. Rheumatol. **20**, 610 (1993).
- 8. Serum autoantibody levels to L-α-phosphatidyl-L-serine, L-α-phoshpatidylinositol, L-α-phospatidyleth-anolamine, L-α-cardiolipin, bovine collagen type II, and rat collagen type VII (all purchased from Sigma), and dsDNA, were measured in triplicate by enzyme-linked immunosorbant assay (ELISA), as described previously (17). For detection of dsDNA autoantibodies, salmon sperm dsDNA (100 μg/ml in PBS) was added to poly-L-lysine-coated 96-well plates and dried overnight at room temperature. Coated wells were treated with SI-nuclease, and the ELISA was then continued as for the other antigens.

- M. I. Bokarewa, M. Blomback, Semin. Hematol. 34, 235 (1997).
- 20. D. K. Graham et al., Oncogene 10, 2349 (1995).
- 21. A. Neubauer et al., Blood 84, 1931 (1994).
- 22. A. Neubauer et al. Leuk. Lymphoma, 25, 91 (1997).
- Web figure 1 and supplemental text are available at Science Online at www.sciencemag.org/cgi/content/ full/293/5528/306/DC1.
- 24. A. B. Lyons, C. R. Parish, *J. Immunol. Methods* **171**, 131 (1994).
- 25. B. Ernst et al., Immunity 11, 173 (1999).
- 26. Single-cell suspensions were prepared by Ficoll-Paque gradient centrifugation of cells collected from 1-2 wild-type spleens. Cells were washed twice, resuspended in PBS/0.1% bovine serum albumin (BSA) at a concentration of 1 × 10⁷ cells/ml, and labeled with
- CFSE (5 μ M) as described (24, 25). Labeled cells were adjusted to 2 \times 10⁷/ml, and 300 μ l of this suspension was injected intravenously into recipients' tail veins. Four to five days after injection, spleens and draining lymph nodes were collected, and single-cell suspensions were prepared for FACS sorting and analysis, as described above.
- 27. T. D. Camenisch et al., J. Immunol. 162, 3498 (1999).
- 28. R. S. Scott et al., Nature 411, 207 (2001).
- 29. Peritoneal macrophages were collected from 3% thioglycolate-treated mouse peritoneal cavities. After 2 hours of incubation in RPMI 1640 medium supplemented with 7% fetal bovine serum, unattached cells were washed off with culture medium and attached cells were cultured overnight. Phagocytosis assays were performed using a Vybrant Phago-
- cytosis assay kit (Molecular Probes), as suggested by the manufacturer. Intracellular fluorescence at 520 nm was read on a Perkin-Elmer HTS7000plus bioassay reader.
- M. Daëron, E. Vivier. Curr. Topics Microbiol. Immunol. 244, 1 (1999).
- 31. The Tyro 3 mutants were originally generated in our lab by M. Gore (currently at Arena Pharmaceuticals), with the assistance of R. Klein and his colleagues (EMBL). We thank S. Goff, G. Matsushima, and H. Shelton Earp for providing the Axl and Mer single mutants and D. Littman and C. Surh for critical review of earlier versions of the manuscript. Supported by grants from the NIH.

17 April 2001; accepted 11 June 2001

Regional Mu Opioid Receptor Regulation of Sensory and Affective Dimensions of Pain

Jon-Kar Zubieta, 1,2* Yolanda R. Smith, 3 Joshua A. Bueller, 1 Yanjun Xu, 1 Michael R. Kilbourn, 2 Douglas M. Jewett, 2 Charles R. Meyer, 2 Robert A. Koeppe, 2 Christian S. Stohler 4

The endogenous opioid system is involved in stress responses, in the regulation of the experience of pain, and in the action of analgesic opiate drugs. We examined the function of the opioid system and $\mu\text{-opioid}$ receptors in the brains of healthy human subjects undergoing sustained pain. Sustained pain induced the regional release of endogenous opioids interacting with $\mu\text{-opioid}$ receptors in a number of cortical and subcortical brain regions. The activation of the $\mu\text{-opioid}$ receptor system was associated with reductions in the sensory and affective ratings of the pain experience, with distinct neuroanatomical involvements. These data demonstrate the central role of the $\mu\text{-opioid}$ receptors and their endogenous ligands in the regulation of sensory and affective components of the pain experience.

Considerable advances have been made in the understanding of pronociceptive mechanisms at the level of their transduction, transmission, and central nervous system representation (1-5). At supraspinal levels, the development and widespread utilization of functional neuroimaging has allowed the examination of changes in the metabolic function of brain regions during the experience of pain. These data have consolidated the view that pain is a complex experience encompassing sensory, affective, and cognitive elements. Neuronal nuclei engaged in its sensory perception and localization, as well as those involved in its anticipatory and affective components, have been described as a result (4-10). However, the function of the supraspinal antinociceptive systems regulating the pain experience has not been sufficiently

explored in humans. The existing data point to the presence of endogenous opioid release, a down-regulation of opioid receptors, or both, when patients diagnosed with persistent painful conditions have been studied before and after treatment with nonselective opioid receptor markers (11–13).

We examined the function of the endogenous opioid system and µ-opioid receptors during the experience of sustained pain in healthy human subjects. The μ-opioid receptors are implicated in antinociception, in stress-induced analgesia, and in the actions of exogenously administered opiate drugs (14-19). We studied 20 healthy volunteers, 13 men and 7 women, between the ages of 20 and 30 years (mean \pm SD, 24 \pm 2 years) (20) with positron emission tomography (PET) and [¹¹C]carfentanil, a selective μ-opioid receptor radiotracer (21, 22). Each volunteer was studied twice, during experimentally induced sustained pain and during placebo administration applied in the masseter (jaw) muscles. Placebo and sustained painful challenges were introduced 20 min after radiotracer administration and were maintained for 20 min. Pain intensity was maintained con-

stant (40 to 60 visual analog scale units) during that period of time (23). Pain and placebo conditions were administered in a double-blind, randomized and counterbalanced fashion. Parametric images of µ-opioid receptor binding potential (defined as the $B_{\text{max}}/K_{\text{d}}$ for this receptor site) were then produced using data obtained from 20 to 70 min posttracer administration (24). Pain intensity was rated every 15 s, and its sensory and pain-specific affective qualities were rated after completion of the PET scans with the McGill Pain Questionnaire (MPQ) (25). Each participant also received a high-resolution magnetic resonance imaging (MRI) anatomical scan (26) that was coregistered to the PET parametric images of receptor binding potential (27).

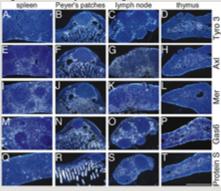
From prior work in experimental animals, it was hypothesized that the painful condition would be associated with an increased release of endogenous opioids in the anterior and ventrolateral portions of the thalamus contralateral to the painful challenge (28, 29), as well as in the ipsilateral amygdala (30). Under the experimental conditions used, the activation of the endogenous opioid system and μ-opioid receptors would be observed as reductions in µ-opioid receptor availability in vivo as measured with PET during the sustained pain condition, compared with placebo. Significant activations of the μ-opioid receptor system were detected in volumes of interest selected in the amygdala ipsilateral to the painful stimulus and in the contralateral ventrolateral portion of the thalamus. These data supported the initial hypothesis that the presence of sustained pain would induce a regionally selective release of endogenous opioids interacting with µ-opioid receptors, resulting in either competition with the radiolabeled tracer for the receptor sites, receptor internalization and recycling, or both (Table 1). The lateralization of these effects is also consistent with those observed in experimental animals (28, 30).

In a second analysis, differences between pain and placebo conditions were tested for statistical significance on a pixel-by-pixel basis using statistical parametric mapping tech-

¹Department of Psychiatry and Mental Health Research Institute, ²Department of Radiology, ³Department of Obstetrics and Gynecology, Medical School, and ⁴Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48104–1687, USA.

^{*}To whom correspondence should be addressed. E-mail: zubieta@umich.edu

Science 13 July 2001:


Vol. 293. no. 5528, pp. 306 - 311 DOI: 10.1126/science.1061663

ABSTRACT (FULL TEXT Homeostatic Regulation of the Immune System by Receptor Tyrosine Kinases of the Tyro 3 Family

Qingxian Lu and Greg Lemke

Supplementary Material

Supplemental Figure 1. Expression of mRNAs encoding Tyro 3 (A through D), Axl (E through **H**), and Mer (**I** through **L**), and their ligands Gas 6 (**M** through **P**) and Protein S (Q through T), in lymphoid tissues. In situ hybridization was performed to sections of wild-type adult spleen (left column), Peyer's patches (middle left), lymph node (middle right), and thymus (right). Bar, 1 mm. See text for details.

Medium version | Full size version

Tyro 3 family receptors and human autoimmunity

The immune system phenotypes of the Tyro 3 family mutants have six salient features. First, they do not result from aberrant development of the immune system during embryogenesis. Rather, they initially appear at ~4 weeks after birth, a time at which the mouse immune system is relatively mature; in some individuals, autoimmune disease is not observed until several months after birth. This postnatal time course is also seen in the death of germ cells in the triple mutant testis and of photoreceptors in the triple mutant retina (1), both of which represent degenerative rather than developmental phenomena. Second, the aberrant proliferation and activation of B and T cells are cell nonautonomous effects. The three genes inactivated in the mutants are not expressed by lymphocytes, but are instead products of APCs. In this respect as well, the immune system phenotypes of the triple mutants resemble the degenerative phenotypes seen in the testis and retina. Tyro 3, Axl, and Mer, together with both of their ligands, are all co-expressed by Sertoli cells in the testis, but none are expressed by the germ cells that degenerate (1). Third, activation of the receptors, which are likely to signal as hetero- and homodimers composed of Tyro 3, Axl, and Mer, is required for the regulation of APC gene products that in turn regulate lymphocytes. This regulation normally includes the downstream suppression of APC expression of IL-12, TNFX and other inflammatory cytokines subsequent to infection. Fourth, the immune system phenotypes are pleiotropic-- they result from the generation of deleterious lymphocytes and antibodies that recognize a diversity of autoantigens in multiple tissues. Fifth, these phenotypes are generally additive with respect to the number of mutations present, an additivity that is consistent with the observed overlapping expression of the three receptors. Lastly, a subset of the mutant phenotypes, such as CNS thromboses, are, like several human autoimmune syndromes, more severe in females than in males. This disparity is reflected in the fact that the average life span of triple mutant males is 57 weeks, whereas that of females is only 45 weeks.

An association of increased risk of venous and arterial thromboses with human autoimmune diseases such as SLE and antiphospholipid antibody syndrome has repeatedly been documented (2), and it has also been noted that reduced activity of the Protein S (PS)/activated Protein C (PC) anticoagulant complex is correlated with these antiphospholipid-associated strokes. At the same time, antiphospholipid antibodies and thromboses are frequently detected in women who experience recurrent pregnancy loss (2). Although it has been suggested that antiphospholipid antibodies directly inhibit blood anticoagulants by interfering with PS/PC cleavage of the Factor Va and VIIIa clotting factors, there are significant contravening data to this suggestion, and a molecular explanation for the correlation of autoimmunity with stroke has remained elusive. We propose a straightforward explanation for this Full Text (PDF) correlation based on our genetic data, and on the fact that Protein S from mouse, human, and bovine sources is an activating ligand for mouse Tyro 3 (3, 4). Namely, a deficiency in the anticoagulant PS, which by default leads directly to thromoboses, would also lead to a deficiency in signaling through the Tyro 3 receptors expressed by APCs. Our data demonstrate that such a deficiency in Tyro 3 signaling in mice in turn leads to the onset of autoimmunity and the appearance of antiphospholipid antibodies.

Article Views

- Abstract
- Full Text (HTML)
- Supplemental Data

ADVERTISEMENT

Request Permission to

As for any autoimmune manifestation, the development of autoimmunity in the Tyro 3 family mutants must involve both (i) the activation of previously indifferent but potentially autoreactive T cells and (ii) the de novo availability and/ or presentation of autoantigens. With respect to the first requirement, our data indicate that the initiating events of autoimmunity in these mutants include the chronic hyperactivation of dendritic cells, macrophages, and, perhaps, Use This Article other professional APCs, and the consequent breaking of peripheral immune tolerance. With respect to the second requirement, APC hyperactivation in the triple mutants always occurs in the context of widespread postnatal degeneration and apoptotic cell death in tissues such as the testis, retina, and brain in which the Tyro 3 family receptors have been shown to play essential roles in cell maintenance and survival (1). The postnatal apoptotic death of cells in these tissues thereby exposes the immune system to elevated levels of autoantigens that are not normally encountered during development. At the same time, although generalized phagocytosis is enhanced in the activated macrophages of the triple mutants, the clearance of apoptotic cells may be specifically compromised in these mice, because this is the case in Mer single mutants (5), and because we have detected elevated numbers of TUNELpositive cells in triple mutant spleen and lymph nodes (6).

A molecular mechanism for APC autoregulation

Cytokine stimulators of macrophages and other APCs, such as IFN-Y, are strongly up-regulated in the peripheral lymphoid organs of the triple mutants. More significantly, triple mutant APCs, when challenged with bacterial LPS, express excessive (much higher than wild-type) levels of MHC class II, B7.2, IL-12, TNFX, and activated NF-KB. Triple mutants, as well as Mer single mutants (7), are hypersensitive to LPS-induced endotoxic shock, tissue damage, and death as a result of the excessive production of TNFC. Together, these observations suggest that signaling through Tyro 3, Axl, and Mer, via the autocrine or paracrine action of Gas6 and/or Protein S, normally inhibits APCs and thereby limits the time course of their activation. That is, that Tyro 3 family receptor signaling in macrophages and other APCs normally serves to attenuate production of TNFX and other inflammatory cytokines that are upregulated as a primary response to infection.

This model is attractive for four reasons. First, it is consistent with all of the molecular and cellular phenotypes observed in the Tyro 3 family mutants. In the absence of Tyro 3 family receptor signaling, APC activation is never suppressed, the immune system becomes constituitively activated, and autoimmunity ensues. Second, it suggests a possible explanation for the fact that human autoimmune episodes very frequently occur subsequent to infections. Third, the model provides a rationale for the repeated observation, in the immune, reproductive, and nervous systems, that one or more Tyro 3 family receptors are typically expressed together with one or more of their ligands in the same cell (1). If activation of Tyro 3 family receptors in APCs serves as an extinguishing signal that limits the time course of their production of inflammatory cytokines, then an autocrine loop of co-expressed ligands and receptors is the most efficacious method through which to establish such a self limiting governor. Although either ligand or receptor expression might be subject to elevation as a consequence of APC activation, it is noteworthy that Gas6 levels in Sertoli cells have been shown to fluctuate dramatically as a function of differentiation state (1). Lastly, Tyro 3, Axl, and Mer share a conserved ITIM (immunoreceptor tyrosine-based inhibition motif)-like element - E(I/M)Y(D/ N)YL - in their cytoplasmic domains. ITIM-like elements in other immunoreceptors mediate the delivery of inhibitory or de-activating signals, most often through the binding of downstream tyrosine phosphatases such as SHP-1 (8). The conserved ITIM-like elements of the three Tyro 3 family receptors are most similar in sequence to those of the PIR-B/p91 immunoreceptor, which is the major SHP-1 binding protein in macrophages and is also thought to function in the suppression of macrophage activation. In this context, three experimental observations are relevant: (i) SHP-1 mutant (motheaten) mice also develop severe inflammation and autoimmunity, (ii) the ectodomains of Tyro 3, Axl, and Mer all carry tandemly-configured immunoglobulin (Ig) domains, as do most other ITIM-containing immunoreceptors, including PIR-B/p91, and (iii) the human Axl gene is located at 19q13.1, a chromosomal locus that contains most of the genes encoding Ig domain-bearing ITIM immunoreceptors in the human genome.

REGISTER NOW! The Ubiquitin-Proteasome **Pathway** Thursday, May 1, 2008 Click here to register Science Sponsored by Invitrogen

To Advertise | Find Products

References

- 1. Q. Lu et al., Nature 398, 723 (1999).
- 2. M. Greaves, *Haematologica* **84**, 32 (1999).
- 3. T. N. Stitt et al., Cell 80, 661(1995).
- 4. P. J. Godowski et al., Cell 82, 355 (1995).
- 5. R. S. Scott et al., Nature 411, 207 (2001).
- 6. Q. Lu, G. Lemke, unpublished data.
- 7. T. D. Camenisch et al., J. Immunol. 162, 3498 (1999).
- 8. M. Daëron, E. Vivier. Curr. Topics Microbiol. Immunol. 244, 1 (1999).

Return to article